四边形有:平行四边形,长方形,正方形,梯形,菱形等等。 1、平行四边形 平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。 在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。 2、长方形 长方形也叫矩形,是一种平面图形,是有一个角是直角的平行四边形。长方形也定义为四个角都是直角的平行四边形。正方形是四条边长度都相等的特殊长方形。 长方形的性质为:两条对角线相等;两条对角线互相平分;两组对边分别平行;两组对边分别相等;四个角都是直角;有2条对称轴(正方形有4条);具有不稳定性(易变形);长方形对角线长的平方为两边长平方的和;顺次连接矩形各边中点得到的四边形是菱形。 3、正方形 正方形,是特殊的平行四边形之一。即有一组邻边相等,并且有一个角是直角的平行四边形称为正方形,又称正四边形。 正方形,具有矩形和菱形的全部特性。 4、梯形 梯形(trapezoid)是只有一组对边平行的四边形。平行的两边叫做梯形的底边:较长的一条底边叫下底,较短的一条底边叫上底;另外两边叫腰;夹在两底之间的垂线段叫梯形的高。一腰垂直于底的梯形叫直角梯形(right trapezoid)。两腰相等的梯形叫等腰梯形(isosceles trapezoid)。 5、菱形 菱形(rhombus)是特殊的平行四边形之一。有一组邻边相等的平行四边形称为菱形。如右图,在平行四边形ABCD中,若AB=BC,则称这个平行四边形ABCD是菱形,记作◇ABCD,读作菱形ABCD。
四边形有正方形、矩形、平行四边形、菱形、梯形五种。 1、正方形 正方形,是特殊的平行四边形之一。即有一组邻边相等,并且有一个角是直角的平行四边形称为正方形,又称正四边形。 2、矩形 矩形是至少有三个内角都是直角的四边形。矩形是一种特殊的平行四边形,矩形也叫长方形。 3、平行四边形 两组对边分别平行的四边形叫做平行四边形。 4、菱形 在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形。 5、梯形 一组对边平行而另一组对边不平行的四边形叫做梯形。平行的两边叫做梯形的底边,较长的一条底边叫下底,较短的一条底边叫上底。另外两边叫腰;夹在两底之间的垂线段叫梯形的高。
五种,四边形的种类: (一)平行四边形 1、定义:两组对边分别平行的四边形叫做平行四边形。 2、性质: (1)平行四边形的面积等于底和高的积。 (2)如果一个四边形是平行四边形,那么这个四边形的两组对边、两组对角分别相等。 (3)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。 (4)如果一个四边形是平行四边形,那么这个四边形的邻角互补。 (5)平行四边形不是轴对称图形,但平行四边形是中心对称图形。 (二)矩形 1、定义:矩形是至少有三个内角都是直角的四边形。矩形是一种特殊的平行四边形,矩形也叫长方形。 2、性质: (1)有一个角是直角的平行四边形是矩形; (2)对角线相等的平行四边形是矩形。 (3)有三个角是直角的四边形是矩形。 (4)定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。 (5)对角线相等且互相平分的四边形是矩形。 (三)正方形 1、定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形,正方形是特殊的平行四边形。 2、性质: (1)正方形的四个角都是直角,四条边都相等; (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。 (3)正方形既是中心对称图形,又是轴对称图形(有四条对称轴)。 (四)菱形 1、定义:在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形。 2、性质: (1)菱形的四条边都相等; (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角。 (3)菱形是轴对称图形,对称轴有2条,即两条对角线所在直线; (4)菱形是中心对称图形; (五)梯形 1、定义:一组对边平行而另一组对边不平行的四边形叫做梯形。平行的两边叫做梯形的底边,较长的一条底边叫下底,较短的一条底边叫上底。另外两边叫腰;夹在两底之间的垂线段叫梯形的高。 等腰梯形:两腰相等的梯形叫做等腰梯形。 2、性质: (1)梯形的上下两底平行; (2)梯形的中位线,平行于两底并且等于上下底和的一半; (3)等腰梯形的对角线相等(可能垂直); (4)等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴。