首页 > 栏目列表 > 正文

柯西施瓦茨不等式

柯西施瓦茨不等式
阅读数3793
柯西施瓦茨不等式
眼前人心上人
眼前人心上人
个性签名:生活就像海洋,只有强者才能到达彼岸。不畏艰难,勇往直前,成就卓越人生。

柯西施瓦茨不等式是什么?

柯西施瓦茨不等式:ai、bi为任意实数(i=1,2...n),则(a1^2+a2^2+.+an^2)(b1^2+b2^2+.+bn^2)>=(a1b1+a2b2+.+anbn)^2.可以构造二次函数,借助判别式来证明。 柯西-施瓦茨不等式是一个在众多背景下都有应用的不等式,例如线性代数,数学分析,概率论,向量代数以及其他许多领域。 它被认为是数学中最重要的不等式之一。此不等式最初于1821年被柯西提出,其积分形式在1859被布尼亚克夫斯基提出,而积分形式的现代证明则由施瓦兹于1888年给出。 发展与应用: 数学上,柯西—施瓦茨不等式,又称施瓦茨不等式或柯西—布尼亚科夫斯基—施瓦茨不等式,是一条很多场合都用得上的不等式,例如线性代数的矢量,数学分析的无穷级数和乘积的积分,和概率论的方差和协方差。 不等式以奥古斯丁·路易·柯西(Augustin Louis Cauchy),赫尔曼·阿曼杜斯·施瓦茨(Hermann Amandus Schwarz),和维克托·雅科夫列维奇·布尼亚科夫斯基(ВикторЯковлевичБуняковский)命名。 以上内容参考 百度百科—柯西—施瓦茨不等式

眼前人心上人
眼前人心上人
个性签名:生活就像海洋,只有强者才能到达彼岸。不畏艰难,勇往直前,成就卓越人生。

柯西施瓦茨不等式是什么?

柯西施瓦茨不等式一般形式:设 V \small VV 是实线性空间,在其上定义内积运算 (   ⋅   , ⋅   ) : V × V → R \small (\,\cdot\,,\cdot\,): V \times V \to R(⋅,⋅):V×V→R,即 ∀    x , y ∈ V ,    ∃ \small \forall \;x,y \in V,\; \exists∀x,y∈V,∃ 唯一的元素 ( x , y ) ∈ R \small (x,y) \in R(x,y)∈R 与之对应。 柯西—施瓦茨不等式的一个重要结果,是内积为连续函数。高等数学中也有广泛的应用,下面介绍它的三种证明方法,从而加深对该不等式的理解,利于教学。 柯西—施瓦茨不等式,又称施瓦茨不等式或柯西—布尼亚科夫斯基—施瓦茨不等式,是一条很多场合都用得上的不等式,例如线性代数的矢量,数学分析的无穷级数和乘积的积分,和概率论的方差和协方差。等筿式成立当且仅当x和y是线性相关。 柯西不等式在解决不等式证明的有关问题中有着十分广泛的应用,对高等数学提升与研究有着非常重要的地位,是高等数学研究内容之一。 性质: 1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。 2、一个向量线性相关的充分条件是它是一个零向量。 3、两个向量a、b共线的充要条件是a、b线性相关。 4、三个向量a、b、c共面的充要条件是a、b、c线性相关。 5、n+1个n维向量总是线性相关。 柯西-施瓦茨不等式是一个在众多背景下都有应用的不等式,例如线性代数,数学分析,概率论,向量代数以及其他许多领域。被认为是数学中最重要的不等式之一。此不等式最初于1821年被柯西提出,其积分形式在1859被布尼亚克夫斯基提出,而积分形式的现代证明则由施瓦兹于1888年给出。